This guide requires an installation of Python and fastmcp library. If you do not know what that is; this guide is not intended for you.
Ensure that FastMCP is installed
Run pip install fastmcp and read the FastMCP documentation.
Set provided Statista configuration details
mcp_api_key = "<YOUR_API_KEY>"
mcp_server_url = "<PROVIDED_MCP_SERVER_URL>"
Run example client
from fastmcp import Client
from fastmcp.client.transports import StreamableHttpTransport
import asyncio
import json
mcp_client = Client(
transport=StreamableHttpTransport(
mcp_server_url,
headers={"x-api-key": mcp_api_key},
),
)
async def main():
async with mcp_client as client:
# List available tools
tools = await client.list_tools()
# Call search-statistics with a natural language query
statistics = await client.call_tool("search-statistics",
{"question": "What's the GDP of Japan?"})
print(json.loads(statistics.content[0].text))
# grab the first statistic id
grab_statistic_id = json.loads(statistics.content[0].text)["items"][0]["identifier"]
# fetch chart data for a specific statistic id
statistic_chart_data = await client.call_tool("get-chart-data-by-id",
{"statistic_id": int(grab_statistic_id)})
statistic_id = json.loads(statistic_chart_data.content[0].text)
chart_data = json.loads(statistic_chart_data.content[1].text)
if __name__ == "__main__":
asyncio.run(main())